

Application Note AN # 74 Monitoring enzyme catalysis using the VERTEX 80 FT-IR spectrometer in Rapid Scan mode

Introduction

α-chymotrypsin is a well characterised mammalian digestive enzyme that catalyses the hydrolytic cleavage of peptide bonds at the carboxyl side of aromatic residues. During the chymotrypsin-catalysed hydrolysis of N-succinyl-Ala-Ala-Pro-Phe-*p*-nitroanilide (Suc-AAPF-*p*NA; see figure 1), formation of the *p*-nitroaniline product can be followed spectroscopically at 410 nm while the peptide product can be monitored by FT-IR spectroscopy due to formation of a new C-terminal carboxylate group. The VERTEX 80 FT-IR spectrometer with the UltraScan[™] linear air bearing scanner with True-Alignment[™] technology is ideally suited for such kinetic studies, since at the fastest mirror velocity (320 kHz) more than 100 spectra at resolution 16 cm⁻¹ can be collected per second.

Experimental

α-chymotrypsin was purchased from Sigma-Aldrich (St. Louis, MO; catalogue number 27270) and used without further purification. The concentration was determined by $\varepsilon_{280} = 5104$ M⁻¹ cm⁻¹. We chose to use the substrate N-succinyl-Ala-Ala-Pro-Phe-*p*-nitroanilide (Sigma catalogue number S7388) as it is a 'good' substrate with a tight K_m and relatively fast k_{cat} value (see reference 1). Additionally, aqueous solutions of the substrate are reasonably soluble to about 15 mM and cleavage can also be followed spectroscopically in the near-UV with ε_{315} (reactant) = 14000 M⁻¹ cm⁻¹ and ε_{410} (product) = 8800 M⁻¹ cm⁻¹. The FT-IR stopped-flow instrument consists of a drive unit, a

thermostatted umbilical supply tube and an infrared cell with an integrated mixer (TgK Scientific, Bradford on Avon, UK) mounted in the sample compartment of a Bruker VERTEX 80 FT-IR spectrometer. The stopped-flow unit and the mixing cell are both contained within an anaerobic Belle Technology glove box, which allows oxygen-sensitive reactions to be performed under a nitrogen environment containing <5 ppm oxygen. The infrared transmission cell has been described previously (see

Figure 1: The α -chymotrypsin-catalysed cleavage of Suc-AAPF-pNA yielding Suc-AAPF-COO⁻ and p-nitroaniline.

reference 2). Briefly, the cell is a demountable stainless steel unit with an integrated T-mixer. It has 1.2 cm CaF₂ windows and the flow channels are 0.5 mm², together creating an 8 mm diameter observation chamber with a 100 µm path length. The stopped-flow mixing time is < 10 ms and the shot volume is variable, with a value of 200 µl used in this study. A photo of the apparatus is shown.

2 mM α -chymotrypsin was mixed with an equal volume of 15 mM Suc-AAPF-*p*NA in 50 mM potassium phosphate/D₂O, pD 8.4 at room temperature within the stopped-flow FT-IR apparatus. A narrow band MCT detector was used for speed and sensitivity. In addition, a long wave pass optical filter <1828 cm⁻¹ is required. The interferogram acquisition mode of "double-sided forward-backward" gave spectra every ~ 68 ms for ~35 s with a spectral resolution of 4 cm⁻¹ (see figure 2).

Further post measurement processing by splitting the interferograms by software enables a four fold increase in time resolution down to \sim 17 ms.

Results

The C-terminal carboxylate moiety of the product is monitored as an increase in both C=O and C-O stretches at 1604 and 1322 cm⁻¹ respectively (see difference spectra in figure 3). The disappearance of the peaks at 1521 and 1344 cm⁻¹ is assigned to the NO₂ group. Representative reaction traces are shown in figure 4 with their colour referring to the peaks marked in the difference spectra. The difference spectra show clear isosbestic points suggestive of a single chemical reaction and reaction traces show that the reaction is completed after ~10 s.

Acknowledgements

These experiments were performed in the Manchester Interdisciplinary Biocentre at the University of Manchester, England.

References

1. Delmar, E.G., Largman, C., Brodrick, J.W., Geokas, M.C. (1976) Anal. Biochem. 99, 316 2. Thumanu, K., Cha, J., Fisher, J.F., Perrins, R., Mobashery, S.,

Figure 2: Progressive FT-IR spectra recorded over the time course of the reaction

Figure 3: Difference FT-IR spectra after subtraction of the first spectrum which highlight the intensity changes

Photo showing stopped flow unit in foreground and VERTEX 80 with IR cell in background

Figure 4: Peak heights of selected bands of the FT-IR spectra versus time which monitor the reaction rate.

Bruker Optics Inc.

Billerica, MA · USA Phone +1 (978) 439-9899 Fax +1 (978) 663-9177 info@brukeroptics.com

www.bruker.com/optics

Bruker Optik GmbH

Ettlingen · Deutschland Phone +49 (7243) 504-2000 Fax +49 (7243) 504-2050 info@brukeroptics.de

Bruker Hong Kong Ltd.

Hong Kong Phone +852 2796-6100 Fax +852 2796-6109 hk@brukeroptics.com.hk

Bruker Optics is continually improving its products and reserves the right to change specifications without notice. © 2014 Bruker Optics BOPT-4000362-01